Sequence analysis State of the art prediction of HIV-1 protease cleavage sites
نویسندگان
چکیده
Motivation: Understanding the substrate specificity of human immunodeficiency virus (HIV)-1 protease is important when designing effective HIV-1 protease inhibitors. Furthermore, characterizing and predicting the cleavage profile of HIV-1 protease is essential to generate and test hypotheses of how HIV-1 affects proteins of the human host. Currently available tools for predicting cleavage by HIV-1 protease can be improved. Results: The linear support vector machine with orthogonal encoding is shown to be the best predictor for HIV-1 protease cleavage. It is considerably better than current publicly available predictor services. It is also found that schemes using physicochemical properties do not improve over the standard orthogonal encoding scheme. Some issues with the currently available data are discussed. Availability and implementation: The datasets used, which are the most important part, are available at the UCI Machine Learning Repository. The tools used are all standard and easily available. Contact: [email protected]
منابع مشابه
A new approach for HIV-1 protease cleavage site prediction combined with feature selection
Acquired immunodeficiency syndrome (AIDS) is a fatal disease which highly threatens the health of human being. Human immunodeficiency virus (HIV) is the pathogeny for this disease. Investigating HIV-1 protease cleavage sites can help researchers find or develop protease inhibitors which can restrain the replication of HIV-1, thus resisting AIDS. Feature selection is a new approach for solving t...
متن کاملState of the art prediction of HIV-1 protease cleavage sites
MOTIVATION Understanding the substrate specificity of human immunodeficiency virus (HIV)-1 protease is important when designing effective HIV-1 protease inhibitors. Furthermore, characterizing and predicting the cleavage profile of HIV-1 protease is essential to generate and test hypotheses of how HIV-1 affects proteins of the human host. Currently available tools for predicting cleavage by HIV...
متن کاملA QSAR Study of HIV Protease Inhibitors Using Computational Descriptors to Prediction of pki of Cycle Derivatives of Urea
Preventing and reducing the spread of HIV (HIV) has always been a concern in medical science. One of the most common ways to control the virus is using enzyme-blocking drugs. In this study, we attempted to predict the biological activity (PKi) of organic urea derivatives in protease inhibitor compounds using molecular modeling using QSAR (Quantitative Structure Activity Relation), which is the ...
متن کاملPROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites
The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our a...
متن کاملFeature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction
It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Ac...
متن کامل